

Transforming Medicaid Data into the Sentinel Common Data Model

Sarah Dutcher, PhD, MS U.S. Food and Drug Administration

Judy Maro, PhD, MS

Department of Population Medicine, Harvard Medical School

Harvard Pilgrim Health Care Institute

Agenda

- 1. Project Overview
- 2. What is the FDA's Sentinel Initiative?
 - Sentinel Common Data Model
- 3. Transformation of Medicaid data into the SCDM
 - Mother-infant linkage
- 4. How can this data source can be used to answer scientific questions?

www.fda.gov

Agenda

1. Project Overview

- 2. What is the FDA's Sentinel Initiative?
 - Sentinel Common Data Model
- 3. Transformation of Medicaid data into the SCDM
 - Mother-infant linkage
- 4. How can this data source can be used to answer scientific questions?

www.fda.gov

Project Overview:

Making Medicaid Data More Accessible Through Common Data Models and FHIR APIs

- The growth of Common Data Models supports rapid evidence generation across multiple databases simultaneously
 - Enables use of large sample sizes to study rare exposures, risk factors and outcomes
- The Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Research Identifiable Files (RIFs) are a research-optimized national Medicaid dataset
- Our project is creating freely available code to format T-MSIS data into the FDA Sentinel and Observational Medical Outcomes Partnership (OMOP) CDMs to improve data access, accelerate analyses, and enable multi-database studies
- A mother-infant linkage will be created to support several analyses on maternal health

Project Overview:

FDA

Making Medicaid Data More Accessible Through Common Data Models and FHIR APIs

- Task 1. FDA transforms TAF data into Sentinel CDM
- Task 2. NLM transforms TAF data into OMOP CDM
- Task 3. FDA and NLM runs Data Quality Metrics
- Task 4. FDA creates a Mother-Infant Linkage
- Task 5. FDA conducts PCOR study with HRSA, NCBDDD, NCHHSTP, NICHD
- Task 6. FDA writes white paper on FHIR API linkage with ONC, NLM
- Task 7. FDA and NLM stakeholder engagement, sustainability

Project Team

Food and Drug Administration

- Sarah Dutcher
- David Moeny
- Lucia Menegussi
- Denise Jones

National Library of Medicine/NIH

- James Mork
- Nick Williams

Sentinel Operations Center (Harvard Pilgrim Health Care Institute)

- Judy Maro
- Christine Halbig
- Robert Rosofsky
- Dan Kiernan
- Alex Mai
- Lauren Zichittella
- Justin Vigeant
- Katie Shapiro
- Laura Shockro

<u>Duke Clinical Research</u> <u>Institute</u>

- Brad Hammill
- Michael Stagner
- Jessica Pritchard
- Steve Lippmann
- Pratap Adhikari

Specific project tasks also receive input from our technical expert panel and/or experts at CDC/NCHHSTP, CDC/NCBDDD, NIH/NICHD, HRSA, and ONC

Agenda

- 1. Project Overview
- 2. What is the FDA's Sentinel Initiative?
 - Sentinel Common Data Model
- 3. Transformation of Medicaid data into the SCDM
 - Mother-infant linkage
- 4. How can this data source can be used to answer scientific questions?

www.fda.gov 7

The Sentinel Initiative and Real World Data

The FDA has two big jobs. One—are the medical products we use SAFE? Two—are the medical products we use EFFECTIVE? In other words, are medical products doing the job they are supposed to do?

FDA is looking into how real world data like that in Sentinel might help FDA answer these important questions. Much of this real world data comes from health insurance companies and patients themselves.

How does Sentinel Work?

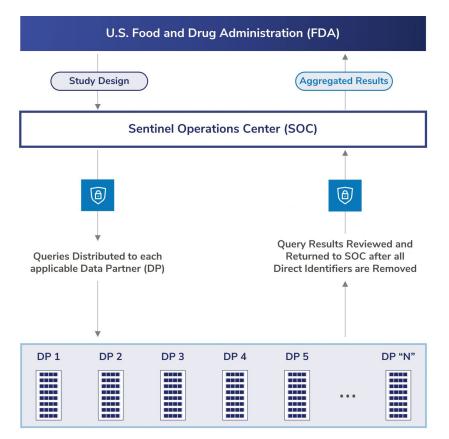
- Sentinel gets information from insurance claims, electronic health records, and patient reports.
- Sentinel uses computer programs to see how groups of patients are doing.
- This real world evidence can show if patients are getting bad side effects and maybe also if products are working.

What kinds of questions?

- What medicines are patients taking and why?
- Are medicines helping or hurting some patients more than others?
- Do side effects interfere with patients' lives?
- Are patients taking medicines the way their doctors prescribed?

What about privacy?

- No one looks at patients' names, addresses, phone numbers, or other identifying information.
- For more information please visit: https://www.sentinelinitiative. org/about/how-sentinelprotects-privacy-security


What happens next?

- FDA may use information from Sentinel to help determine whether medical products are safe and working.
- FDA warns patients and their doctors about bad side effects
- If a patient has concerns about their medical products, they should contact their doctor

Sentinel is a Distributed Data Network

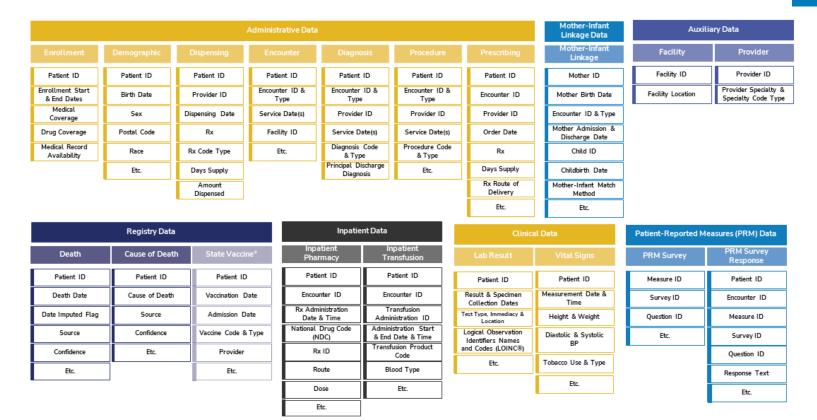
Sentinel Data Partners

Sentinel Operations Center: Harvard Pilgrim Health Care Institute

SDD Data Partners:

- 1. Aetna, a CVS Health company
- 2. Duke University School of Medicine: Department of Population Health Sciences
- 3. HealthCore/Elevance Health
- 4. HealthPartners Institute
- 5. Humana, Inc.
- 6. Kaiser Permanente Colorado Institute for Health Research
- 7. Kaiser Permanente Hawai'i, Center for Integrated Health Care Research
- 8. Kaiser Foundation Health Plan of the Mid-Atlantic States, Inc.
- 9. Kaiser Permanente Northwest Center for Health Research
- 10. Kaiser Permanente Washington Health Research Institute
- 11. Marshfield Clinic Research Institute
- 12. Optum (OptumInsight Life Sciences Inc. and Optum Labs®)
- 13. Vanderbilt University Medical Center, Department of Health Policy (Tennessee Medicaid data)

Medicare Fee-for-Service and Medicaid data


Sentinel's Data Philosophy

- Sentinel predominantly includes administrative claims and a subset of electronic health record (EHR) and registry data
- Data are transformed into the Sentinel Common Data Model (SCDM)
 - Data are stored at most granular/raw level possible with minimal mapping
 - Distinct data types are kept separate (e.g., prescriptions, dispensings)
 - Construction of medical concepts (e.g., outcome algorithms) from these elemental data is a project-specific design choice
 - SCDM is flexible enough to accommodate new data domains (e.g., free text)
- Appropriate use and interpretation of local data requires the Data Partners' local knowledge and data expertise
 - Not all tables are populated by all Data Partners → site-specificity is allowed
- SCDM was designed to meet FDA needs for analytic flexibility, transparency, and control

Sentinel Common Data Model

Single Patient Example Data in SCDM

DEMOGRAPHIC

PATID BIRTH_DATE SEX HISPANIC RACE zip
PatID1 2/2/1984F N 5 32818

ENROLLMENT

PATID ENR_START ENR_END MEDCOV DRUGCOV
PatID1 7/1/2004 12/31/2006 Y Y
PatID1 9/1/2007 6/30/2009 Y Y

DISPENSING

PATID	RXDATE	NDC	RXSUP	RXAMT
PatID1	10/14/2005	00006074031	30	30
PatID1	10/14/2005	00185094098	30	30
PatID1	10/17/2005	00378015210	30	45
PatID1	10/17/2005	54092039101	30	30
PatID1	10/21/2005	00173073001	30	30
PatID1	10/21/2005	49884074311	30	30
PatID1	10/21/2005	58177026408	30	60
PatID1	10/22/2005	00093720656	30	30

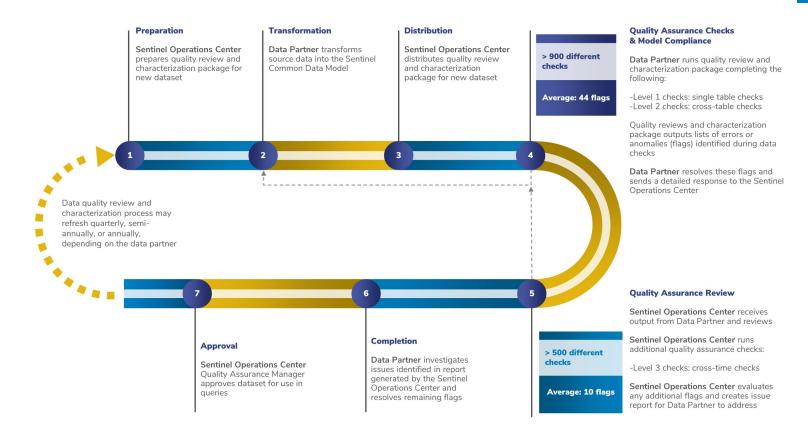
ENCOUNTER

PATID ENCOUNTERID ADATE DDATE ENCTYPE
PatID1 EncID1 10/18/2005 10/20/2005 IP

DIAGNOSIS

PDX PATID **ENCOUNTERID** ADATE **PROVIDER ENCTYPE** DX DX CODETYPE PatID1 EncID1 10/18/2005 296.2 9 P Provider1 IP 10/18/2005 PatID1 EncID1 Provider1 IP 300.02 95 EncID1 10/18/2005 Provider1IP 95 PatID1 311 EncID1 10/18/2005 Provider1IP 401.9 95 PatID1 10/18/2005 493.9 PatID1 EncID1 Provider1 IP 95 10/18/2005 PatID1 EncID1 Provider1IP 715.9 95

PROCEDURE


PATID	ENCOUNTERID	ADATE	PROVIDER	ENCTYPE	PX	PX_CODETYPE
PatID1	EncID1	10/18/2005	Provider1	.IP	84443	3C4

MOTHER-INFANT LINKAGE

ı	MPATID	ADATE	DDATE	CPATID	CBIRTH_DATE	CSEX	CENR_START	BIRTH_TYPE	MATCHMETHOD
	PatID1	5/3/2006	5/5/2006	PatID2	5/2/2006	М	6/1/2006	5	1 SI

Data Quality Checks and Examples

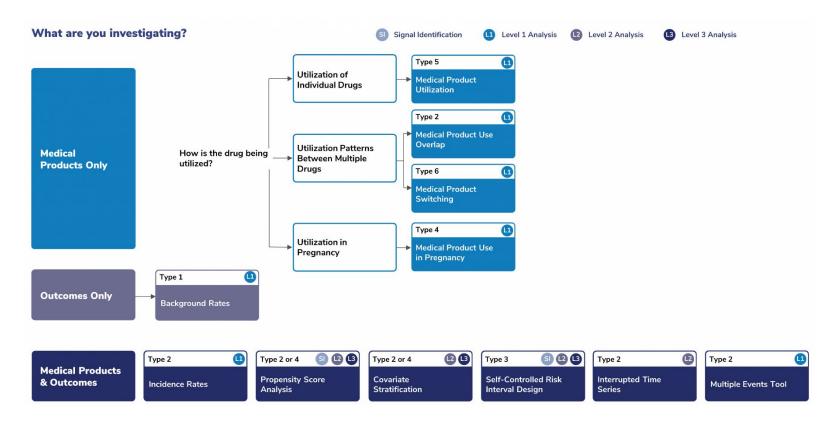
Level 1 Checks: Single table checks

- ✓ Completeness
 - Admission date is not missing value
- ✓ Validity

Admission date is in date format

Level 2 Checks: Cross-table checks

- Accuracy
 - Admission date occurs before the patient's discharge
- Integrity
 Admission date occurs within the patient's active enrollment period


Level 3 Checks: Cross-time checks

Consistency of Trends

There is no sizable percent change in admission date record counts by month-year

Routine Analytic Tools

Agenda

- 1. Project Overview
- 2. What is the FDA's Sentinel Initiative?
 - Sentinel Common Data Model
- 3. Transformation of Medicaid data into the SCDM
 - Mother-infant linkage
- 4. How can this data source can be used to answer scientific questions?

www.fda.gov

Medicaid Data – Basic Primer

What is it?

- Data about beneficiary enrollment and eligibility, utilization and claims, and expenditures for people covered by Medicaid or the Children's Health Insurance Program (CHIP)
- Medicaid and CHIP, combined, provide health coverage to millions of Americans of all ages, including eligible low-income adults, children, pregnant women, elderly adults and people with disabilities.
- In 2010, the Patient Protection and Affordable Care Act (ACA) included a provision to expand Medicaid eligibility to adults up to age 64 with incomes up to 138% of the federal poverty level.
- As of August 2021, 38 states and Washington, DC have adopted the ACA's Medicaid eligibility expansion provision.

How is it available?

- States and territories administer health insurance programs and submit their enrollment and claims data to the federal government in the Transformed Medicaid Statistical Information System (T-MSIS) format starting in 2014, with all states complying by 2016.
- T-MSIS Research Identifiable Files are produced in yearly increments. There is approx. a 2-year lag for "settled" data.
- An earlier submission system known as the Medicaid Statistical Information System (MSIS) was used previous to T-MSIS, from which the Medicaid Analytic extract (MAX) files were created. It was retired in place.

of Medicaid and CHIP data in

T-MSIS Analytic Files (TAF)

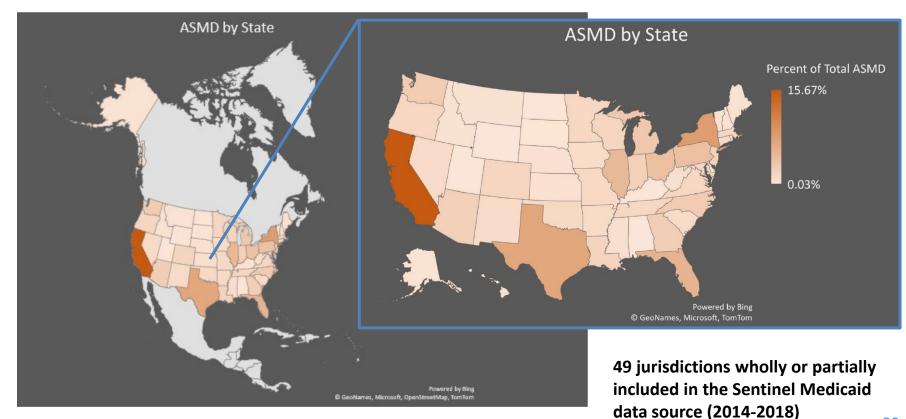
HOW TO USE DQ ATLAS

DQ (Data Quality) Atlas includes data quality information that supports insightful, methodologically sound analyses using the T-MSIS Analytic Files (TAF) Research Identifiable Files (RIF). Select one of the below pathways to explore key Medicaid and Children's Health Insurance Program (CHIP) topics such as enrollment, claims, expenditures, and service use.

EXPLORE BY TOPIC

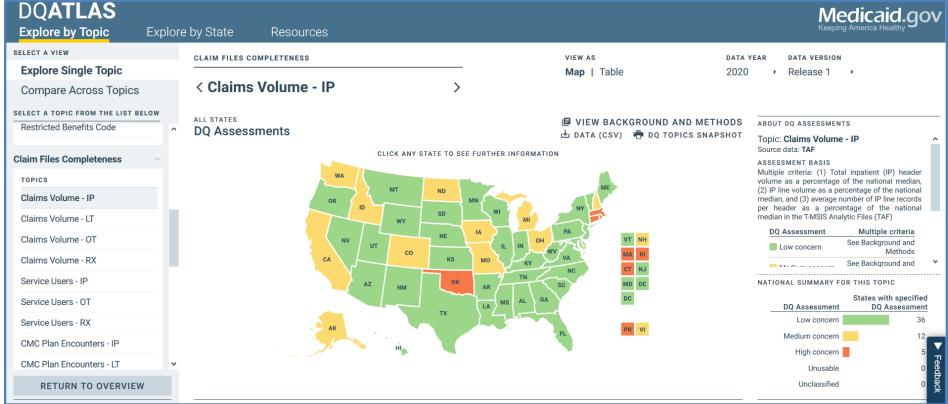
View data quality assessments on topics such as enrollment, claims, expenditures, and service use.

EXPLORE BY STATE


View data quality assessments for a selected state for all available topics.

RESOURCES

Learn more about DQ Atlas and how it can support your work.


CMS Medicaid Dataset by Jurisdiction

Adding Medicaid Data to the Sentinel Distributed Database

Minimum Requirements for Inclusion

- FDA's requirements for pharmacoepidemiology studies are centered around complete capture during enrollment (i.e., absence of event is TRUE absence)
- These fields must not be marked "Unusable" by DQ Atlas:
 - a) Dual Eligibility Code
 - b) Comprehensive Managed Care Plan Encounters Completeness
 - c) Number of Enrollment Spans
 - d) Admission Date Completeness
 - e) Discharge Date Completeness
 - f) Diagnosis Codes Completeness
 - g) Procedure Codes Completeness
 - h) Claims Volume Completeness
 - i) Type of Service (Inpatient v Outpatient v Long Term Care)

Continuity and Completeness of Data

Descriptions	Jurisdictions	Total
Jurisdictions with 5 Years of Continuous Inclusion*	AK, KS, ME, MT, NC, NE, NH, NM, NV	9
Jurisdictions with < 5 Years of Continuous Inclusion	AR, AZ, CA, CO, CT, DE, FL, GA, HI, IA, ID, IN, LA, MD, MI, MN, MO, MS, ND, NJ, NY, OH, OK, OR, PA, RI, SC, SD, TN, TX, VA, VI, VT, WA, WV, WY	36
Jurisdictions with Years of Intervening Exclusions	DC, IL, PR, WI	4
Jurisdictions without Any Inclusion	AL, KY, MA, UT	4

Examples

Jur.	Plan	2014	2015	2016	2017	2018
AK	FFS	✓	✓	✓	✓	✓
	CMC	\checkmark	✓	\checkmark	✓	✓
AR	FFS	_	_	×	✓	✓
	CMC	_	_	×	\checkmark	\checkmark
DC	FFS	✓	ж	✓	✓	✓
	CMC	\checkmark	×	\checkmark	\checkmark	\checkmark
AL	FFS	×	×	×	×	×
	CMC	×	×	×	×	×

^{*}In this table, an Included Year is counted only when both FFS and CMC are included.

Addition of CMS Medicaid Data to the Sentinel Distributed Database

Sentinel Distributed Database <u>before</u> Adding CMS Medicaid Data

874 million person-years of data

64 million
individuals
currently accruing
new data

17 billion pharmacy dispensings

16 billion unique medical encounters

6 million deliveries with a mother-infant linkage

Sentinel Distributed Database <u>after Adding</u> CMS Medicaid Data

1 billion person-years of data

113 million
individuals
currently accruing
new data

19 billion pharmacy dispensings

20 billion unique medical encounters

8 million deliveries with a mother-infant linkage

Medicaid ETL 1 Demographics

	N	%
No. of Unique Patient IDs	90,700,484	100.0
Age Group		
0-18 years	47,276,540	52.1%
19-44 years	29,874,048	32.9%
45-64 years	12,682,872	14.0%
65+ years	849,855	0.9%
Missing	17,169	0.0%
Sex		
Female	48,337,141	53.3%
Male	42,344,286	46.7%
Unknown	19,057	0.0%
Race		
American Indian or Alaska	1,286,624	
Native	, ,	1.4%
Asian	3,942,643	4.3%
Black or African American	15,266,630	16.8%
Native Hawaiian or Other Pacific Islander	475,510	0.5%
White	30,856,508	34.0%
Unknown	38,872,569	42.9%
Hispanic Origin		
Yes	20,223,270	22.3%
No	52,027,380	57.4%
Unknown	18,449,834	20.3%

The Medicaid data mart makes up about 21% of the SDD by patient ID and is the largest DP, despite having only 4 years of data

Generally younger population than the general SDD, with a wealth of data on pediatrics

	Medicaid	National DPs	Medicare FFS
<18	47.3M (52.1%)	6.5M (18.5%)	<2000 (0.0%)
65+	0.9M (0.9%)	5.6M (16.0%)	12.9M (60.0%)

Lower % unknown race and ethnicity than national DPs

	Medicaid	National DPs	Medicare FFS
Unknown race	38.9M (42.9%)	154.1M (88.0%)	3.2M (6.8%)
Unknown ethnicity	18.4M (20.3%)	164.6M (94.0%)	1.7M (3.6%)

Medicaid ETL 1 Demographics: Encounters and Dispensings

Year	Encounters	Dispensings
2014	198,302,975	103,567,526
2015	447,642,011	259,389,529
2016	910,500,387	555,203,624
2017	1,024,619,369	617,816,746
2018	960,503,462	543,960,355
Total	3,541,568,204	2,079,937,780

Year	Jurisdictions Fully Included	Jurisdictions Fully Excluded
2014	14	1
2015	23	4
2016	39	10
2017	44	7
2018	41	9

of encounters and dispensings increase over time due to increase in contributing jurisdictions

	Medicaid	National DPs	Medicare FFS
Total Encounters	3.5 Billion	5.5 Billion	9.1 Billion
Total Dispensings	2.1 Billion	6.2 Billion	9.4 Billion

Medicaid ETL 1 Deliveries

	N	%
Identified Deliveries	2,925,646	100.0
Age Group		
10-19 years	287,176	9.8%
20-24 years	886,594	30.3%
25-29 years	899,556	30.7%
30-34 years	547,361	18.7%
35-39 years	246,682	8.4%
40-44 years	54,213	1.9%
45-54 years	4,064	0.1%

	N	%
Year		
2015	394,063	13.5%
2016	696,699	23.8%
2017	989,905	33.8%
2018	844,979	28.9%
Encounter Type		
Ambulatory Visit	93,939	3.2%
Emergency Department	5,040	0.2%
Inpatient Hospital Stay	2,553,038	87.3%
Non-Acute Institutional Stay	27,236	0.9%
Other Ambulatory Visit	246,393	8.4%

Medicaid ETL 1 MIL Linkage Rates

Jurisdiction	Deliveries	Infants	Linkage Rate ^a	Jurisdiction	Deliveries	Infants	Linkage Rate ^a
MS	29,351	81,771	95.4%	CO	43,833	106,756	79.3%
NH	9,886	22,245	93.7%	DC^{c}	8,327	21,204	79.1%
IN	99,459	192,399	92.6%	WV	18,895	48,706	78.7%
KS	40,721	73,617	92.6%	AZ	112,406	213,176	78.5%
ОН	146,598	244,347	92.2%	SD	4,288	23,312	78.1%
LA	86,484	174,620	91.8%	OR	41,420	106,304	74.8%
PA	113,730	296,466	91.1%	GA	77,058	290,861	73.7%
NY	215,178	617,043	90.3%	KY	1,120	3,620	72.6%
WI	47,788	134,392	89.4%	NV	8,463	90,764	71.6%
HI	17,948	37,265	89.2%	VI	483	1,961	71.4%
MT ^c	16,422	29,286	89.1%	MA	2,784	81,195	70.0%
AK	14,860	23,808	88.9%	MD	27,210	40,926	69.4%
NM	35,308	76,063	88.8%	PR ^C	8,246	43,133	68.2%
WY	4,501	12,936	88.3%	CA^{c}	361,338	842,089	63.8%
IA	35,804	87,420	88.2%	MN	53,424	92,715	55.9%
ND	3,275	12,288	88.2%	FL	243,103	470,794	42.4%
MI	64,467	198,761	87.9%	TN ^c	20,800	103,970	39.4%
VA	84,198	183,665	87.7%	MO	64,125	164,344	28.9%
DE	9,767	26,167	87.6%	NE ^c	32,148	50,309	20.4%
VT	5,558	13,396	86.7%	AR ^{b,c}	17,441	80,888	10.2%
ME	16,989	26,528	86.6%	SC_p	14,225	42,183	1.0%
ID	4,600	38,055	84.9%	TX^b	131,484	999,096	0.2%
ОК	66,663	147,667	84.9%	CT^b	30,490	75,412	0.0%
RI	6,466	15,562	83.2%	NC^b	122,942	295,073	0.0%
IL	155,597	336,307	83.1%	NJ^b,c	42,092	172,098	0.0%
UT	250	2,383	82.8%	WA ^b	105,143	197,196	0.0%
AL^c	490	3,447	79.7%	Total	2,925,646	7,765,989	64.0%

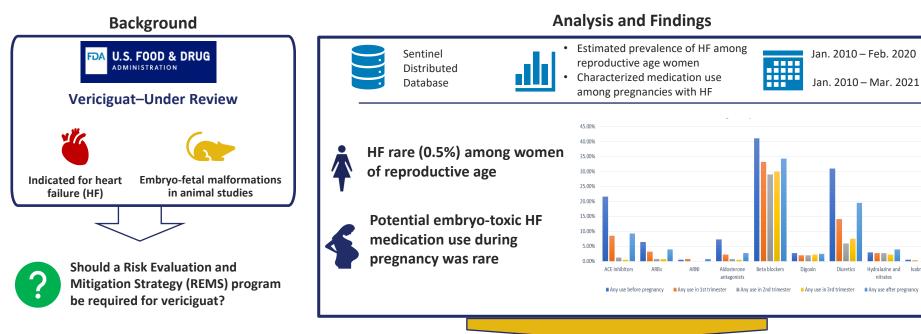
- Calculated as (Linked Deliveries) / (Total # of Deliveries)
- ^b Noted jurisdictions had case numbers (i.e., family ID variables) that were unique to individuals over 85% of the time
- ^c Noted jurisdictions had case numbers (i.e. family ID variables) that were missing over 10% of the time

Agenda

- 1. Project Overview
- 2. What is the FDA's Sentinel Initiative?
 - Sentinel Common Data Model
- 3. Transformation of Medicaid data into the SCDM
 - Mother-infant linkage
- 4. How can this data source can be used to answer scientific questions?

www.fda.gov

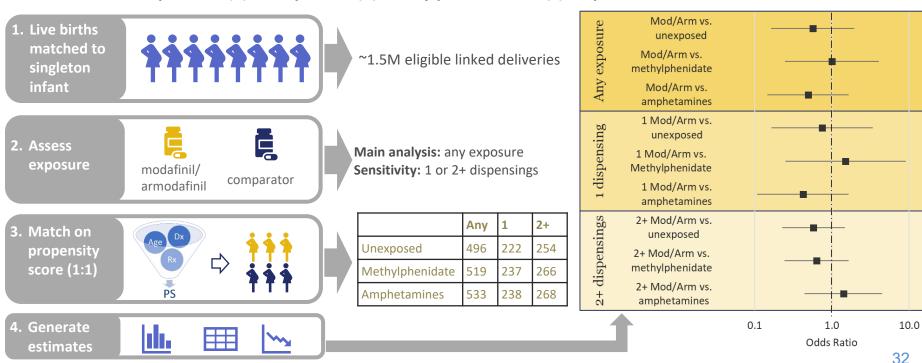
What Kinds of Questions Can we Answer?


1. How does FDA use these data?

- Use in pregnancy
- Risk of negative infant outcomes following maternal exposure during pregnancy
- 2. How can the scientific community use these data?
 - Publicly-available resources
 - Examples: maternal mortality, adherence to prenatal screening

www.fda.gov

Assessment of Heart Failure in Pregnancy to Support Pre-Market Review of Vericiguat



Regulatory Recommendation: This information contributed to the FDA's determination that labeling would provide sufficient information to ensure the benefits of vericiguat outweigh its risks.

What is the risk of cardiac malformations after inutero exposure to modafinil/armodafinil?

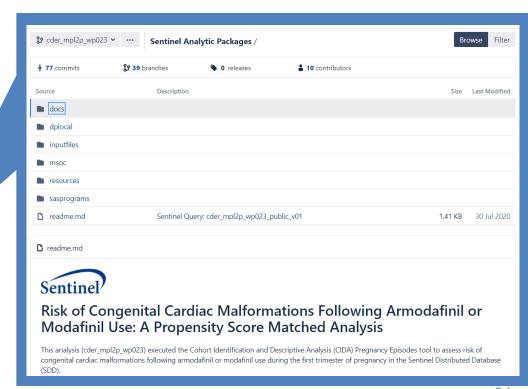
Comparing incidence of cardiac malformations in the infant after first trimester dispensings of modafinil or armodafinil compared to (a) no exposure, (b) methylphenidate, or (c) amphetamines

What Kinds of Questions Can we Answer?

1. How does FDA use these data?

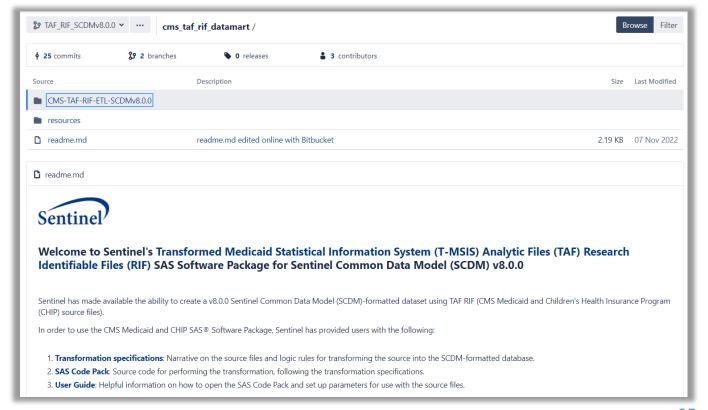
- Use in pregnancy
- Risk of negative infant outcomes following maternal exposure during pregnancy

2. How can the scientific community use these data?


- Publicly-available resources
- Examples: maternal mortality, adherence to prenatal screening

www.fda.gov

Publicly-Available Resources


Provigil (Modafinil) and Nuvigil (Armodafinil) & Congenital Cardiac Malformations **Details** Status: Ongoing Last Updated: Tuesday, November 17, 2020 Original Posting Date: Thursday, July 30, 2020 Health Outcome(s): congenital cardiac malformations Purpose: Drug and Outcome Analysis Meets requirements of FD&C Act Sec 505(o) prior to requiring a PMR: No Analytic Code Link(s) (1) Risk of Congenital Cardiac Malformations Following Armodafinil or Modafinil Use: A **Propensity Score Matched Analysis** Result(s) (2) Risk of Congenital Cardiac Malformations Following Armodafinil or Modafinil Use: A Descriptive Analysis Risk of Congenital Cardiac Malformations Following Armodafinil or Modafinil Use: A Propensity Score Matched Analysis

Publicly-Available Resources

T-MSIS-to-SCDM Transformation Materials:

Sentinel Has Tools That Can Address...

1. Longitudinal Maternal & Infant Health Information for Research Use Cases

- Pregnancy and subsequent death within a specific time frame: Cohort includes women who died within a year (365 days) of a pregnancy regardless of cause of death or pregnancy outcome
 - Limited by death data available in T-MSIS, which is generally believed to well-capture inpatient death but not out-of-hospital death
- Hypertensive disorders of pregnancy: Cohort focuses on individuals with a diagnosis of pregnancy-induced hypertension, gestational hypertension, and/or post-partum hypertension diagnoses within 6 weeks of delivery

2. Other Proposed Use Cases

- Prevalence of prenatal tests among pregnant women
 - We have done extensive work in this area in the Sentinel Distributed Database prior to the inclusion of Medicaid (https://pubmed.ncbi.nlm.nih.gov/35122354/
- Prevalence of prenatal screening for HIV in women and their newborn infants

Next Steps

Task 3. FDA and NLM run Data Quality Metrics

 Develop 30 data quality metrics to characterize data once transformed into a CDM format and compare across the two CDMs

Task 5. FDA conducts PCOR study with HRSA, NCBDDD, NCHHSTP, NICHD

- Conduct a demonstration study using the transformed T-MSIS dataset and Sentinel analytic tools
 - Leveraging a freely available analytic tool designed to monitor healthcare utilization (e.g., drug exposures, screening procedures) among pregnant women
- Study will address one or more important public health questions in maternal health, with objective(s) selected by the workgroup and the Technical Expert Panel

Conclusions

- The CMS T-MSIS dataset is a valuable data source capturing key populations of public health interest, especially pregnant women and infants
- Sentinel's existing data infrastructure enables us to integrate Medicaid data with commercial claims data
 - Very large distributed database of linked mother-infant pairs
 - Necessary for studying rare drug-related adverse events to support FDAs mission to promote drug safety
- Commitment to transparency
 - All analytic tools and study materials are made publicly available
 - External researchers can leverage analytic code, transform their data into the SCDM,
 and replicate analyses or conduct new analyses

